A remark on tutorial class 3

Date: 16.Feb 2017

In the tutorial class 3, I made a mistake as follows.

$$
\begin{aligned}
\|A x\|_{l^{1}} & =\sum_{i}\left|\sum_{j} a_{i j} x_{j}\right| \leq \sum_{i} \sum_{j}\left|a_{i j}\right|\left|x_{j}\right| \\
& \leq \sum_{i}\left(\sup _{j}\left|a_{i j}\right|\right) \sum_{j}\left|x_{j}\right| \leq \sum_{i}\left(\sup _{j}\left|a_{i j}\right|\right)\|x\|_{l^{1}} \\
& \leq\left(\sup _{j} \sum_{i}\left|a_{i j}\right|\right)\|x\|_{l^{1}} .
\end{aligned}
$$

Here the last inequality is wrong because we have a counterexample:
Let

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

then

$$
\sum_{i}\left(\sup _{j}\left|a_{i j}\right|\right)=2,
$$

but

$$
\sup _{j} \sum_{i}\left|a_{i j}\right|=1
$$

The right argument is that

$$
\begin{aligned}
\|A x\|_{l^{1}} & =\sum_{i}\left|\sum_{j} a_{i j} x_{j}\right| \leq \sum_{i} \sum_{j}\left|a_{i j} \| x_{j}\right| \\
& \leq \sum_{j} \sum_{i}\left|a_{i j}\right|\left|x_{j}\right| \quad \text { (Change the order of summation) } \\
& \leq \sum_{j}\left|x_{j}\right|\left(\sum_{i}\left|a_{i j}\right|\right) \\
& \leq \sum_{j}\left|x_{j}\right|\left(\sup _{j} \sum_{i}\left|a_{i j}\right|\right) \\
& \leq\left(\sup _{j} \sum_{i}\left|a_{i j}\right|\right)\|x\|_{l^{1}} .
\end{aligned}
$$

I am very sorry for the confusion brought to you.

